Increased gravitational force reveals the mechanical, resonant nature of physiological tremor

نویسندگان

  • M. Lakie
  • C. A. Vernooij
  • C. J. Osler
  • A. T. Stevenson
  • J. P. R. Scott
  • R. F. Reynolds
چکیده

KEY POINTS Physiological hand tremor has a clear peak between 6 and 12 Hz, which has been attributed to both neural and resonant causes. A reduction in tremor frequency produced by adding an inertial mass to the limb has usually been taken as a method to identify the resonant component. However, adding mass to a limb also inevitably increases the muscular force required to maintain the limb's position against gravity, so ambiguous results have been reported. Here we measure hand tremor at different levels of gravitational field strength using a human centrifuge, thereby increasing the required muscular force to preserve limb position without changing the limb's inertia. By comparing the effect of added mass (inertia + force) versus solely added force upon hand acceleration, we conclude that tremor frequency can be almost completely explained by a resonant mechanical system. ABSTRACT Human physiological hand tremor has a resonant component. Proof of this is that its frequency can be modified by adding mass. However, adding mass also increases the load which must be supported. The necessary force requires muscular contraction which will change motor output and is likely to increase limb stiffness. The increased stiffness will partly offset the effect of the increased mass and this can lead to the erroneous conclusion that factors other than resonance are involved in determining tremor frequency. Using a human centrifuge to increase head-to-foot gravitational field strength, we were able to control for the increased effort by increasing force without changing mass. This revealed that the peak frequency of human hand tremor is 99% predictable on the basis of a resonant mechanism. We ask what, if anything, the peak frequency of physiological tremor can reveal about the operation of the nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dominant role for mechanical resonance in physiological finger tremor revealed by selective minimization of voluntary drive and movement.

There is a debate in the literature about whether the low- and high-frequency peaks of physiological finger tremor are caused by resonance or central drive. One way to address this issue is to examine the consequences of eliminating, as far as possible, the resonant properties or the voluntary drive. To study the effect of minimizing resonance, finger tremor was recorded under isometric conditi...

متن کامل

Physiological tremor reveals how thixotropy adapts skeletal muscle for posture and movement

People and animals can move freely, but they must also be able to stay still. How do skeletal muscles economically produce both movement and posture? Humans are well known to have motor units with relatively homogeneous mechanical properties. Thixotropic muscle properties can provide a solution by providing a temporary stiffening of all skeletal muscles in postural conditions. This stiffening i...

متن کامل

Large Amplitude Vibration Analysis of Graphene Sheets as Resonant Mass Sensors Using Mixed Pseudo-Spectral and Integral Quadrature Methods

The present paper investigates the potential application of graphene sheets with attached nanoparticles as resonant sensors by introducing a nonlocal shear deformation plate model. To take into account an elastic connection between the nanoplate and the attached nanoparticle, the nanoparticle is considered as a mass-spring system. Then, a combination of pseudo-spectral and integral quadrature m...

متن کامل

Study of the flexural sensitivity and resonant frequency of an inclined AFM cantilever with sidewall probe

The resonant frequency and sensitivity of an atomic force microscope (AFM) cantilever with assembled cantilever probe (ACP) have been analyzed and a closed-form expression for the sensitivity of vibration modes has been obtained. The proposed ACP comprises an inclined cantilever and extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidew...

متن کامل

Study of the flexural sensitivity and resonant frequency of an inclined AFM cantilever with sidewall probe

The resonant frequency and sensitivity of an atomic force microscope (AFM) cantilever with assembled cantilever probe (ACP) have been analyzed and a closed-form expression for the sensitivity of vibration modes has been obtained. The proposed ACP comprises an inclined cantilever and extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 593  شماره 

صفحات  -

تاریخ انتشار 2015